Solving the Dirichlet-to-Neumann map on an oblate spheroid by a mesh-free method

نویسندگان

  • A. Costea
  • Q. T. Le Gia
  • D. Pham
  • E. P. Stephan
  • T. Tran
چکیده

In this paper, we study a mesh-free method using the Galerkin method with radial basis functions (RBFs) for the exterior Neumann problem of the Laplacian with boundary condition on an oblate spheroid. This problem is reformulated as a pseudo-differential equation on the spheroid by using the Dirichlet-to-Neumann map. We show convergence of the Galerkin scheme. Our approach is particularly suitable for handling scattered data. We also propose a fast solution technique based on a domain decomposition method (obtained by the additive Schwarz operator) to precondition the illconditioned matrices arising from the Galerkin scheme. We estimate the condition number of the preconditioned system. Numerical results supporting the theoretical results are presented.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An efficient approximate method for solution of the heat equation using Laguerre-Gaussians radial functions

In the present paper, a numerical method is considered for solving one-dimensional heat equation subject to both Neumann and Dirichlet initial boundary conditions. This method is a combination of collocation method and radial basis functions (RBFs). The operational matrix of derivative for Laguerre-Gaussians (LG) radial basis functions is used to reduce the problem to a set of algebraic equatio...

متن کامل

A Simple and Systematic Approach for Implementing Boundary Conditions in the Differential Quadrature Free and Forced Vibration Analysis of Beams and Rectangular Plates

This paper presents a simple and systematic way for imposing boundary conditions in the differential quadrature free and forced vibration analysis of beams and rectangular plates. First, the Dirichlet- and Neumann-type boundary conditions of the beam (or plate) are expressed as differential quadrature analog equations at the grid points on or near the boundaries. Then, similar to CBCGE (direct ...

متن کامل

Solution to the Neumann problem exterior to a prolate spheroid by radial basis functions

We consider the exterior Neumann problem of the Laplacian with boundary condition on a prolate spheroid. We propose to use spherical radial basis functions in the solution of the boundary integral equation arising from the Dirichlet-to-Neumann map. Our approach is particularly suitable for handling of scattered data, e.g. satellite data. We also propose a preconditioning technique based on doma...

متن کامل

A Plane Wave Discontinuous Galerkin Method with a Dirichlet-to- Neumann Boundary Condition for a Scattering Problem in Acoustics

We consider the numerical solution of an acoustic scattering problem by the Plane Wave Discontinuous Galerkin Method (PWDG) in the exterior of a bounded domain in R2. In order to apply the PWDG method, we introduce an artificial boundary to truncate the domain, and we impose a non-local Dirichlet-to-Neumann (DtN) boundary condition on the artificial curve. To define the method, we introduce new...

متن کامل

A Boundary Meshless Method for Neumann Problem

Boundary integral equations (BIE) are reformulations of boundary value problems for partial differential equations. There is a plethora of research on numerical methods for all types of these equations such as solving by discretization which includes numerical integration. In this paper, the Neumann problem is reformulated to a BIE, and then moving least squares as a meshless method is describe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010